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We present a theory for the lifetime T�N , f� of a ligand-receptor cluster with N bonds under constant external
force F= fN, where f is force per bond. We show that there exists a critical force per bond fc such that at large
N when f � fc the lifetime T�N , f� is independent of cluster size N; when f � fc the lifetime scales as
ln�T�N , f���N due to a free energy barrier with height �N along the dissociation path; when f = fc, the lifetime
scales as T�N , f��N1/3 due to strong fluctuation of a number of closed bonds. Our study shows that adhesion
clusters with more bonds are more stable at small f but respond to external force as fast as smaller adhesion
clusters at large f .
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I. INTRODUCTION

Cell adhesions are mediated by specific noncovalent
bonds that are reversible and sensitive to external perturba-
tions �1�. The response of adhesion complexes to external
force is important in embryo development, cell migration,
and immunological response �2�, therefore single molecule
pulling experiments for adhesion complexes have attracted
considerable interest �3�. In biological situations, multiple
adhesion complexes are arranged in parallel as adhesion
clusters in cell-cell or cell-matrix adhesion. When an exter-
nal force acts on an adhesion cluster, broken bonds may re-
bind before the whole adhesion cluster dissociates because
the remaining closed bonds still hold two surfaces close to
each other. This effect is clearly important for cell adhesion,
and it cannot be studied by single molecule experiments.
Recently, experiments have started to study the response of
multiple parallel bonds to an overall mechanical load �4�.
Theoretical study of adhesion clusters under external force
begins with the seminal work of Bell �1�, in which the life-
time of adhesion clusters under constant external force was
studied by a deterministic equation. Later Bell’s work was
extended to include fluctuation of a number of closed bonds
by a stochastic model �5�. Recently, the popularity of me-
chanical pulling experiments has stimulated theories �6–8�
for the rupture force of adhesion clusters under linear load
rate. Adhesion clusters under constant displacement have
also been studied �9�.

As shown schematically in Fig. 1, an adhesion cluster
made of ligand-receptor pairs can be modeled as N parallel
bonds with Nb of them in the closed state and N−Nb of them
in the free state �5–9�. The receptors are fixed on a rigid plate
A and the ligands are connected to another rigid plate B by
flexible polymer linkers. When external force F is applied to
the cluster, all closed bonds share the force equally, therefore
at any instance each closed bond experiences an external
force F /Nb� f /nb, where f =F /N is force per bond and nb
=Nb /N is the fraction of closed bonds. The energy U�x� of a
bond along the reaction coordinate x under external force

f /nb has a bound state at xb and a free state at xf separated by
a barrier at x�, where xb�x��xf all depend on f and nb. The
unbinding rate of a closed bond and the rebinding rate of a
broken bond can be calculated from the Kramers theory
�10,11�, i.e.,

koff�f ,nb� =
D

2�kBT
�U��xb��U��x���e−��U�x��−U�xb��

�
D

2�kBT
��U��x���e−�U�x��e�Gb�nb,f� �1�

and

kon�f ,nb� =
D

2�kBT
�U��xf��U��x���e−��U�x��−U�xf��

�
D

2�kBT
��U��x���e−�U�x��e�Gf�nb,f�. �2�

Here Gb�nb , f� and Gf�nb , f� are the free energy associated
with the bound state and free state of a single bond for given
nb and f . Equations �1� and �2� also indicate that both koff
and kon depend on f and nb through xb, x�, and xp, but they
are independent of N. Many previous theoretical studies
�7,12–15� have discussed both koff and kon in the context
of single bond and adhesion clusters, but theoretical studies
on the relations between T�N , f�, the lifetime of an adhesion
cluster, and N for constant external force have only been
carried out by applying certain approximations for koff and
kon. For example, Refs. �1,5� assumed that koff�f ,nb�
=k0e�fx0/nb and kon=�, where x0 is the intrinsic length scale
of a ligand-receptor complex, k0 is the dissociation rate of a
complex in the absence of external force, and � is a constant.
The approximations for koff, and especially assuming kon to
be a constant, certainly limit the generality of the quantita-
tive predictions in these studies. Other choices of kon �7,16�
have been chosen in more recent studies. Thus a question
remains to be answered is what properties of adhesion clus-
ters depend on the details of koff and kon and what properties
are general features of adhesion clusters that are independent
of these details. Therefore in this article we study T�N , f� by
constructing the effective free energy G�Nb , f� of the system*hschen@phy.ncu.edu.tw
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from the master equation. We find that, indeed, there are
several general features of adhesion clusters under constant
external force in the limit of large N that are independent of
specific forms of kon and koff.

II. EFFECTIVE FREE ENERGY
OF AN ADHESION CLUSTER

The probability that under given force F there are Nb
closed bonds in the cluster at time t, P�Nb , t�, satisfies a
one-step master equation

dP�Nb,t�
dt

= g�f ,Nb − 1�P�Nb − 1,t� − r�f ,Nb�P�Nb,t�

− g�f ,Nb�P�Nb,t� + r�f ,Nb + 1�P�Nb + 1,t�

= J�Nb − 1 → Nb� − J�Nb → Nb + 1� , �3�

for 1�Nb�N−1, where g�f ,Nb�= �N−Nb�kon�f ,nb�,
r�f ,Nb�=Nbkoff�f ,nb�. J�Nb−1→Nb�=g�f ,Nb−1�P�Nb

−1, t�−r�f ,Nb�P�Nb , t� is the probability current from Nb

−1 to Nb. The cluster dissociates when Nb=0, thus it is an
absorbing boundary of the master equation. It is convenient
to introduce the effective free energy G�Nb , f� by

r�f ,Nb�
g�f ,Nb − 1�

= e�G�Nb,f�−G�Nb−1,f��/kBT, �4�

i.e., when J�Nb−1→Nb�=0, the system reaches a time-
independent state with P�Nb−1� / P�Nb�=exp	�G�Nb , f�
−G�Nb−1, f�� /kBT
. Note that the system under consider-
ation does not have such a time-independent state due to the
absorbing boundary at Nb=0. In the limit N	1, one can
approximate G�Nb , f�−G�Nb−1, f� by �G�Nb , f� /�Nb, thus
Eq. �4� can be expressed as

ln
Nb

N − Nb
+ ��Gb�nb, f� − Gf�nb, f�� = �

�G�Nb, f�
�Nb

+ O� 1

N
� .

�5�

Direct integration gives the free energy difference between
two different Nb at fixed f ,

G�Nb, f� − G�Nb�, f�

= N�
nb�

nb �Gb�nb�, f� − Gf�nb�, f� + kBT ln
nb�

1 − nb�
�dnb�� ,

�6�

where nb=Nb /N, nb�=Nb� /N. For given f , this expression can
be used to construct the free energy landscape of the adhe-
sion cluster. Equation �6� also indicates that G�Nb , f��N in
the large N limit, as one expects from elementary thermody-
namics.

Next we make a connection between the rate equation for
Nb and the free energy of the cluster. The probability current
can be reexpressed by direct substitution of Eq. �4� into
J�Nb−1→Nb�,

J�Nb − 1 → Nb�

= − Nbkoff�f ,nb��P�Nb,t�

− e−��G�Nb,f�−G�Nb−1,f��P�Nb − 1,t��

� − Nbkoff�f ,nb��1 − e−��G�Nb,f�−G�Nb−1,f���P�Nb,t�

− Nbkoff�f ,nb�e−��G�Nb,f�−G�Nb−1,f���Nb
P�Nb,t�

+ higher order terms, �7�

where “higher order terms” are negligible when Nb	1.
The second term in the last expression is the diffusion cur-
rent and the first term is the current driven by free energy
gradient, i.e., −Nbkoff�f ,nb��1−e−��G�Nb,f�−G�Nb−1,f���P�Nb , t�
=� dNb

dt
�P�Nb , t�. Thus when the fluctuation of Nb is small, a

deterministic rate equation describes the time evolution of
Nb,

dNb

dt
= − Nbkoff�f ,nb��1 − e−��G�Nb,f�−G�Nb−1,f���

= − Nbkoff�f ,nb� + �N − Nb�kon�f ,nb�

+ small corrections

or

dnb

dt
= − nbkoff�f ,nb� + �1 − nb�kon�f ,nb� + small corrections.

�8�

Here “small corrections” are negligible when Nb	1. It
is important to note that the approximations �r�f ,Nb��
=r�f , �Nb�� and �g�f ,Nb��=g�f , �Nb�� are made when deriv-
ing the rate equation from the master equation. Moreover, the
rate equation follows a master equation with natural bound-
ary condition at Nb=0, not the biological relevant absorbing
boundary condition �5�. Therefore the prediction of the rate
equation is expected to be nonexact.

Although the rate equation is only an approximation to
the dynamics of an adhesion cluster in the limit of small
fluctuation in Nb, by comparing the first term on the right
hand side of Eq. �8�, i.e., number of rupture events per unit
time, to the second term, i.e., number of rebinding events per
unit time, one still obtains valuable information about the

FIG. 1. �Color online� Schematics of an adhesion cluster. There
are N parallel bonds with Nb of them in the closed state, N−Nb of
them in the free state. The receptors are fixed on a rigid plate A and
the ligands are connected to another rigid plate B by flexible poly-
mer linkers. External force F is applied on plate B while plate A is
stationary.
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dynamics of an adhesion cluster under given external force.
From Eqs. �1� and �2�, in general kon decreases and koff
increases as f increases or nb decreases due to change of
rebinding and unbinding energy barrier. Thus as shown in
Fig. 2, nbkoff increases as f increases or nb decreases, and
�1−nb�kon at given f has a peak and the height of the peak
drops as f increases. From the shapes of nbkoff and
�1−nb�kon, Eq. �8� predicts that when f is small, the number
of closed bonds in the cluster decreases from Nb=N to
Nb

m=Nnb
m, where nb

m is determined by nb
mkoff�f ,nb

m�
= �1−nb

m�kon�f ,nb
m�. Furthermore, there exists a critical force

per bond fc such that as force increases to
f � fc, the peak of �1−nb�kon becomes sufficiently small
and nbkoff becomes sufficiently large such that the relation
nbkoff�f ,nb�� �1−nb�kon�f ,nb� holds for all nonzero nb. At
f = fc the curve nbkoff and �1−nb�kon intersect at only one
point nb

*. Thus fc and nb
* are determined by

nb
*koff�f ,nb

*� = �1 − nb
*�kon�f ,nb

*� �9�

and

�

�nb
�nb

*koff�f ,nb
*�� =

�

�nb
��1 − nb

*�kon�f ,nb
*�� . �10�

It is clear that fc is independent of N, so the critical force for
the cluster Fc=Nfc is proportional to the number of bonds in
the cluster. When f � fc the cluster dissociates fast under ex-
ternal force. In the seminal work �1� Bell showed that fc
exists even when kon is independent of f . He also calculated
the critical force for kon=� and koff�f ,nb�=k0e�fx0/nb.

The existence of a critical force per bond fc also reveals
important information about the shape of G�Nb , f�. From Eq.
�4�, a stable steady state at nb

m=Nb
m /N in the N	1 limit ac-

tually means �G�Nb , f� /�Nb=0 at Nb=Nb
m, i.e., at f � fc,

G�Nb , f� has a local minimum at Nb
m=Nnb

m. Of course in this
case the cluster still has a finite lifetime due to an absorbing
boundary at Nb=0, but this is beyond the regime where the
rate equation is applicable for studying T�N , f�. When f
� fc, there is no stable steady state for any nonzero nb and
G�Nb , f� increases monotonically as Nb increases. The criti-
cal force is given by the condition that G�Nb , f� has a inflec-
tion point at Nb

*=Nnb
*�N.

III. LIFETIME OF AN ADHESION CLUSTER

The above discussion suggests that the lifetime of a clus-
ter under external force in these three regions �f � fc, f = fc,
and f � fc� should be analyzed separately. Therefore we have
performed Monte Carlo simulations for the master equation
with Gillespie algorithm �17� for various f and N and two
choices of kon and koff. In all simulations the initial number
of closed bonds is chosen to be N. Since the goal of this
paper is to point out some general properties of adhesion
clusters under constant external force, these two models are
chosen to illustrate the fact that although they have different
kon and koff, still the lifetimes of adhesion clusters at given f
in these two models have some common properties.

In the “constant kon model,” koff�f ,nb�=k0e�fx0/nb and kon

=� �5�; here unit time is chosen to be 1 /k0, unit force is
��x0�−1, and �=1. In the “nonconstant kon model,” U�x� is
chosen to be U�x� /kBT=U0�x� /kBT+Uspring�x� /kBT=3�x−12

−8x−8+8x−6�+ 1
2 �x−xp�2; here unit length and unit time are

chosen such that the spring constant k=1 and D=1, and xp
satisfies xp−xb= f /nb �6,18�. When calculating kon and koff in
the “nonconstant kon model” Eqs. �1� and �2� are used and we
have taken the values of xb, x�, and xf with the following
approximation: xb and x� are taken to be the positions of the
bound state and barrier of U0�x�, and xf �xp=xb+ f /nb

�18,19� for the choices of f in the simulations. Thus kon and
koff can be found by substituting U0 and xb, x�, xf into Eqs.
�1� and �2�, fc and nb

* are found from numerical solutions of
Eqs. �9� and �10�. Since the fact that the shapes of effective
free energy of an adhesion cluster at the N	1 limit below
and above fc are different is central in our analysis; a discus-
sion on the critical forces in constant kon and nonconstant kon
models is included in the Appendix. The important message
in the Appendix is that fc and nb

* are both model dependent.
Different choices of kon and koff give very different fc and nb

*.
Figure 3�a� shows that when f is greater than fc, T�N , f�

approaches the lifetime predicted by the rate equation Trate�f�
for large clusters for both constant and nonconstant kon mod-
els. Here Trate is obtained by solving Eq. �8� numerically,
thus it is independent of N. When f � fc, G�Nb , f� increases
monotonically as Nb increases, and as a result the probability
current in Eq. �8� is dominated by � dNb

dt
�P�Nb , t� term. There-

fore T�N , f� in this case agrees well with that in the rate
equation except for a small difference due to fluctuations in
Nb and different boundary conditions between the rate equa-
tion and master equation �as pointed out in the previous sec-
tion�. Since Eq. �8� also indicates that for large N, dnb /dt is
independent of N, thus the lifetime of the cluster at given f
� fc becomes independent of N. The distinct trends of
T�N , f� /Trate�f� in two models at small N comes from differ-
ent choices of kon and koff; because our main focus is T�N , f�
at N	1, we shall not discuss this difference in detail.

Figure 3�b� shows that when N	1, T�N , f� scales as N1/3

at f = fc. This power law dependence can be understood by
the following analysis. As the inset of Fig. 3�b� shows,
G�Nb , fc� is very flat around the inflection point Nb

*, thus the
cluster spends most of its lifetime in a region with width
�Nb−Nb

* � ��Nb, where �dNb /dt� is small and the dissocia-
tion of the cluster is due to a “random walk” along the Nb

FIG. 2. Schematics of nbkoff and �1−nb�kon at large f �dashed
curves� and small f �solid curves�. Because koff increases and kon

decreases as f increases, at sufficiently large f , nbkoff� �1−nb�kon

for all nb�0.
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axis �fluctuation of Nb� with an exit at Nb−Nb
*�−�Nb. To

determine �Nb, note that the characteristic time scale of
�dNb /dt� at �Nb−Nb

* � ��Nb, Tdet��Nb�, should be roughly
the same as Tdif��Nb�, the characteristic time for Nb to
“diffuse” around Nb

* for a distance �Nb. From Eq. �7�, the
effective diffusion constant of Nb near Nb

* is simply
Nnb

*koff�fc ,nb
*�, thus Tdif��Nb

2 / �2Nnb
*koff�fc ,nb

*��. From

the first line of Eq. �8� one finds that dNb /dt
�−�Nnb

*koff�fc ,nb
*� /kBT� �G

�Nb
when Nb is not far from

Nb
*. Since G�Nb , fc�−G�Nb

* , fc��� �3G
�Nb

3�
Nb

*�Nb
3 when Nb is

close to Nb
*, and � �3G

�Nb
3�

Nb
*�N−2 because G�N, thus one

can write G�Nb ,Fc�=G�Nb
* ,Fc�+g3N−2�Nb

3 where g3 is
independent of N. It follows that Tdet��Nb�dNb /dt�−1

�	�Nnb
*koff�fc ,nb

*� /kBT��NbN−2
−1. Because T�Tdet�Tdif,
one finds that �Nb�N2/3 and T�Tdif�N1/3. That is, the 1 /3
power law is a result of diffusion in the Nb axis for a distance
�Nb�N2/3 with an effective diffusion constant �N.

Figure 3�c� shows that when f � fc, ln�T�N , f�� is linear in
N. From the shape of G�N−b , f� shown in the inset of Fig.
3�c�, the existence of a metastable well at Nb

m indicates that
one may treat cluster dissociation at f � fc as a barrier cross-
ing process along the Nb axis. Since G�Nb , f��N when N
	1, at given f the height of the free energy barrier along the
Nb axis for cluster dissociation is proportional to N, thus
T�N , f� increases exponentially with N. The cluster dissocia-
tion rate kcluster�N , f� can be expressed as the Kramers escape
rate from Nb

m to Nb=0 �10,11�. Consider a steady state of an
ensemble of adhesion clusters maintained by adding an ad-
hesion cluster at Nb=N whenever a cluster dissociates to
Nb=0. Since J�Nb−1→Nb�=J is independent of Nb in the
steady state, by expressing the steady state probability distri-
bution as Ps�Nb�=
�Nb�e−�G�Nb,f�, J can be expressed as

J = −

�Nb

m�

�
Nb=1

Nb=Nb
m

e�G�Nb,f�

Nbkoff�f ,nb�

.

Furthermore, in the limit when the metastable well is suffi-

ciently deep, the probability for a cluster to have Nb�Nb
m, P̃,

follows Kramers’ original approximation

P̃ = �
Nb=Nb

M

N


�Nb�e−�G�Nb,f� � 
�Nb
m� �

Nb=Nb
M

N

e−�G�Nb,f�,

where Nb
M is the local maxima of G�Nb , f�. Approximating

the summations by integrals and evaluating the integrals by
the method of steepest decent, and dropping terms of order
unity, one finds that

kcluster = −
J

P̃
�

Nb
Mkoff�f ,nb

M�
2�kBT

�G��Nb
m, f��G��Nb

M, f��

�e−��G�Nb
M,f�−G�Nb

m,f��. �11�

That is, the effective kinetic coefficient of the cluster along
the Nb axis is Nb

Mkoff�f ,nb
M�, i.e., the number of bond rupture

events per unit time at the barrier of G�Nb , f�. As can be seen
from Eq. �6�, the barrier height G�Nb

M , f�−G�Nb
m , f��N and

the prefactor is �N0 because G��Nb
m , f��G��Nb

M , f���N−2.
Therefore for large clusters ln T�N , f��N at given f � fc due
to a barrier of height �N. It is interesting to note that from
the analytical solution of the master equation, Ref. �5�
showed that in the constant kon model, when f � fc, ln T
�N in the large N limit. In this paper we show that by
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FIG. 3. �Color online� �a� T�N , f� /Trate�f� for �f − fc� / fc=0.1. In
both the constant kon model �squares� and nonconstant kon model
�circles�, T�N , f� approaches the prediction of rate equation as N
increases. �b� T�N , fc� /T�N=100, fc� for the constant kon model
�squares� and nonconstant kon model �circles�. The dashed line is
T�N1/3. �c� T�N , f� /T�N=100, f� for �f − fc� / fc=−0.03. Both the
constant kon model �squares� and nonconstant kon model �circles�
show that ln T�N , f��N for N	1. G�Nb , f� /N for f � fc, f = fc, and
f � fc for the nonconstant kon model are shown in the insets of �a�,
�b�, and �c�, respectively.

TANG, CHU, AND CHEN PHYSICAL REVIEW E 76, 061905 �2007�

061905-4



studying the effective free energy for given f � fc, ln T�N at
large N for general kon�f ,nb� and koff�f ,nb�.

IV. CONCLUSION

We have shown that T�N , f�, the lifetime of an adhesion
cluster under external force, is closely related to the shape of
G�Nb , f�, the effective free energy of the system. For adhe-
sion clusters under constant force per bond, larger adhesion
clusters have much higher stability than smaller adhesion
clusters when f � fc but dissociate as fast as smaller clusters
when force per bond exceeds a critical strength. At f = fc
cluster lifetime scales �N1/3, this is a crossover from
N-independent lifetime to exponential N dependence. Similar
results have been shown for the “constant kon model” at f
� fc by Erdmann and Schwarz �5�. Our work shows that the
scaling laws hold for any adhesion cluster whose ligand-
receptor unbinding and binding rates can be expressed as
functions of f and nb. We also show that the critical force per
bond fc and the point of inflection nb

* are both model depen-
dent: they depend on the details of ligand-receptor interac-
tions. Since there is no scaling relation for T�N , f� in the
small N limit, the lifetime of adhesion clusters with a few
bonds is also model dependent.

Constant f experiments can be performed by putting
ligands and receptors on two plates with constant areal den-
sity and applying a force that is proportional to the area of
the plates. Since experiments have shown that in cell-matrix
adhesion the area of the focal adhesion domain is propor-
tional to the force transmitted from the cell to the substrate
�20�, it is possible that focal adhesion is under constant force
per bond. Thus our theory could be relevant to new cell
adhesion experiments and experiments on biomimetic sys-
tems. The idea of constructing an effective free energy for
multiple-bond systems is quite general: it can be applied to
adhesion clusters under constant loading rate �4,21� or con-
stant displacement �9�, or other adhesion-related problems
such as systems with mobile stickers and variable contact
area �22�.
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APPENDIX

In this appendix we discuss fc and nb
* in both constant

kon and nonconstant kon models. It will be shown that fc
and nb

* in these two models are very different, thus the criti-
cal force per bond and the position of inflection point of
G�Nb , fc� depend on the choices of kon and koff.

In the constant kon model, koff�f ,nb�=k0e�fx0/nb and kon

=� �5�; here unit time is chosen to be 1 /k0 and unit force is
��x0�−1. The critical force per bond fc was solved by Bell
from Eqs. �9� and �10� �1�; it satisfies

Z exp�Z� = �e−1/k0, �A1�

where

Z = �fcx0 and nb
* =

Z

1 + Z
. �A2�

We find fc=0.2785 and nb
*=0.2178 when �=1. The exponen-

tial in Eq. �A1� indicates that for any reasonable values of
� /k0, Z is not greater than O�1�, thus from Eq. �A2�, nb

* is
not close to 1 in the constant kon model. We will show in the
following that this is very different from the nonconstant kon
model.

In the nonconstant kon model, the total energy for a bond
is the sum of a “bare ligand-receptor interaction energy”
and a spring potential U�x� /kBT=U0�x� /kBT+Uspring�x� /kBT
=3�x−12−8x−8+8x−6�+ 1

2 �x−xp�2; here unit length and unit
time are chosen such that the spring constant k=1 and D
=1. U0�x� has a bound state at x=xb

�0��0.7574, a barrier at
x=x�

�0��1.068 with U�xb
�0���−10.30kBT, U�x�

�0���3.356kBT,
and U�x�→0 at x→. In fact, the width of the barrier is of
order unity because U�x��0.3kBT for x�2.0. The simula-
tions are carried out at f close to fc and we have found that in
this regime xb�xb

�0�, x��x�
�0�, xp=xb= f /nb, and xf �xp=xb

+ f /nb are all very good approximations �19�. At very small f
this approximation breaks down since xf should not become
xb at f =0.

Although in the simulation we solve Eqs. �9� and �10�
numerically to find fc and nb

* for the nonconstant kon model,
to further compare fc in both models it is convenient to make
the following approximation: U0�xf�+Uspring�xf��0 when f
= fc. This approximation has been shown to give fc and nb

*

within 0.2% from numerical solutions and allows us to com-
pare fc and nb

* in both models �19�. In this approximation,
Eqs. �1� and �2� can be expressed as

koff�f ,nb� = k0ef�x�
�0�−xb

�0��/nb, �A3�

where

k0 =
D

2�kBT
��U0��xb

�0�� + k��U0��x�
�0�� + k�

�e−	�U0�x�
�0��−U0�xb

�0���+k/2�xb
�0� − x�

�0��2


and

kon�f ,nb� =
D

2�kBT
�k�U0��x�

�0�� + k�e−U0�x�
�0��

� exp�−
k

2
�x�

�0� − xb
�0� − f/knb�2� . �A4�

Substituting Eqs. �A3� and �A4� into Eqs. �9� and �10�, we
find

fc = �kY�1 −
1

Y
� , �A5�

where Y =1 / �1−nb
*� is the solution of
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�Y − 1�W = e−Y/2, W =�U0��xb
�0�� + k

k
eU0�xb

�0��. �A6�

The numerical solutions of Eqs. �9� and �10� for our choice
of U0�x� give fc�2.525 �this corresponds to �fc�x
�0.7865, where �x=x�

�0�−xb
�0��, and nb

*�0.8788.
In general W�1 because −U0�xb

�0�� is large compared to
unity. This leads to exp�−Y /2��1, i.e., nb

* is close to 1, thus
in general fc�1. This is very different from the constant kon
model, where fc can be small if � is chosen to be small and

in general nb
* is not close to 1. The physical consequence of

this difference can be seen from Eq. �9�. In the nonconstant
kon model nb

*�1−nb
*, as a result koff�fc ,nb

*��kon�fc ,nb
*�.

That is, at critical force, force per bond at nb=nb
* is still

weak. In general this is not true in the constant kon model.
This difference apparently comes from different choices of
kon and koff in these two models, thus fc and nb

* both depend
on the microscopic details of ligand-receptor interactions.
However, these different models obey the same scaling laws
for T�N , f� at the N	1 limit, which strongly supports the
main results of this paper.
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